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Abstract
The inverse magnetocaloric effect occurs when a magnetic material cools down under applied
magnetic field in an adiabatic process. Although the existence of the inverse magnetocaloric
effect was recently reported experimentally, a theoretical microscopic description is almost
nonexistent. In this paper we theoretically describe the inverse magnetocaloric effect in
antiferro- and ferrimagnetic systems. The inverse magnetocaloric effects were systematically
investigated as a function of the model parameters. The influence of the Néel and the
compensation temperature on the magnetocaloric effect is also analyzed using a microscopic
model.

1. Introduction

Intensive investigations have been concentrated on the
magnetocaloric effect (MCE) since 1997, when Pecharsky
and Gschneidner reported [1] the discovery of the giant
magnetocaloric effect in Gd5(Six Ge1−x)4. This discovery
was a significant breakthrough since before the giant-MCE
discovery, the main interest in the MCE was restricted
to producing refrigeration in very low temperatures [2, 3].
Several giant magnetocaloric materials have been reported
since then, such as MnFeP0.45As0.55 [4], MnAs1−x Sbx [5, 6],
and La(Fe1−xSix)13 [7, 8]. Theoretical models in which
the magnetoelastic interaction is considered, in the Bean and
Rodbell [9] assumption, were successfully [10–12] applied
to the giant-MCE in Gd5(Six Ge1−x)4, MnFeP0.45As0.55 and
MnAs1−x Sbx . Recently review articles on magnetocaloric
materials have been elaborated by: Brük [13], Pecharsky et al
[14], and Phan and Yu [15].

4 Address for correspondence: Instituto de Fı́sica—Departamento de
Eletrônica Quântica, Universidade do Estado do Rio de Janeiro, Rua São
Francisco Xavier, 524-30 andar. Maracanã-Rio de Janeiro–20550-013, Brazil.

The MCE is characterized by the isothermal magnetic
entropy change �S and the adiabatic temperature change
�Tad, which are observed upon magnetic field changes. If
the temperature derivative of the magnetization is negative,
as is the case of the regular ferromagnetic materials, the
thermodynamic formulation of the �S and �Tad predicts
�S < 0 and �Tad > 0 (the direct MCE), i.e. the
sample heats up when the external magnetic field is applied
adiabatically. On the other hand, if the temperature derivative
of the magnetization is positive, an opposite effect occurs,
i.e. �S > 0 and �Tad < 0 (the inverse MCE), the
sample cools down when the external magnetic field is applied
adiabatically. The inverse MCE exists in different kinds of
magnetic arrangements. In the antiferromagnetic compound
MnBr2·4H2O an inverse MCE of about �Tad ≈ −0.125 K
at T = 1.75 K was observed [16, 17], under magnetic
field change of 1 T. The inverse MCE in antiferromagnetic
compounds is associated with antiparallel disorder of magnetic
sublattices and was first noted by Kurti [18] and Garrett [19]
in connection with the studies of a Tutton salts. In the
ferrimagnetic compound ytterbium iron garnet Yb3Fe5O12

the magnetocaloric measurements [20] showed that as the
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magnetic field is increased from zero to 6.5 T the temperature
of the compound falls from 22 to 16.5 K, i.e. an inverse
MCE of �Tad = −5.5 K. In the paramagnetic compound
PrNi5 heat capacity measurements showed [21, 22] the inverse
MCE with maximum value of about �Tad ≈ −0.7 K which
occurs at 6.5 K, under magnetic field change from zero to
5 T. Recently, giant inverse MCE was reported [23, 24] in
ferromagnetic Heusler-type alloys Ni0.5Mn0.5−x Snx . For x =
0.13 the maximum entropy change of �S = 18 J kg−1 K−1

was obtained at about T = 300 K for magnetic field change
from zero to 5 T. The intensity of this inverse MCE is almost
equal to the direct giant-MCE measured in Gd5Si2Ge2 [25].
There are several other materials in which inverse MCEs were
recently observed, some examples are: Ni50Mn34In16 [26];
CoMnSi [27]; and Mn1.82V0.18Sb [28].

In this paper a microscopic model has been developed
to quantitatively understand the inverse MCE which can
appear in antiferromagnetic and ferrimagnetic arrangements.
The model takes into account a magnetic system formed
by two different magnetic ions which are coupled by the
exchange interactions. A general magnetic state equation was
obtained from the microscopic Hamiltonian. The influence
of the exchange interactions on the magnetocaloric potential
was investigated, highlighting the inverse MCE due to the
antiferromagnetism and ferrimagnetism with and without
compensation temperature.

2. Theory

In our model the magnetic system is formed by two sublattices
of spins J a and J b in the presence of external magnetic field
and in thermodynamic equilibrium. The Hamiltonian for this
system is given by:

H = −
∑

i, j

λ
(i, j)
ab J a

i J b
i −

∑

i, j

λ(i, j)
aa J a

i J a
i

−
∑

i, j

λ
(i, j)
bb J b

i J b
i − μBh

∑

i

(ga J a
i + gb J b

i ), (1)

where λ
(i, j)
ab , λ

(i, j)
aa , and λ

(i, j)
bb are the inter- and intra-sublattices

exchange parameters between pairs of magnetic ions. J a, J b,
ga, and gb represent the total angular momentum operators
and the Landé factors of the a-ions and b-ions. The last term
accounts for the Zeeman interaction, where h is the external
magnetic field and μB is the Bohr magneton. Extracting
from (1) the single ion Hamiltonian for the nearest and next
nearest neighbor pairs, we have:

H = −λab J a
i

Zab∑

j=1

J b
j − λab J b

i

Zba∑

j=1

J a
j − λaa J a

i

Zaa∑

j=1

J a
j

− λbb J b
i

Zbb∑

j=1

J b
j − μBh(ga J a

i + gb J b
i ), (2)

where the sums are over the Zab nearest J b
j -neighbors of the

J a
i ion, Zba nearest J a

j -neighbors of the J b
i ion, Zaa nearest

J a
j -neighbors of the J a

i ion and Zbb nearest J b
j -neighbors of

the J b
i ion, respectively. λab, λaa , and λbb are the exchange

interactions between nearest inter-sublattices neighbors, the

exchange interactions between nearest intra-a-sublattice and
b-sublattice neighbors, respectively. Considering that all ions
in the a-sublattice, as well as the ions in the b-sublattice, are
identical and equivalents, in the mean field approximation, we
obtain:

H = −λab Zab〈J b〉J a − λab Zba〈J a〉J b − λaa Zaa〈J a〉J a +
− λbb Zbb〈J b〉J b − μBh(ga J a + gb J b). (3)

The 〈J a〉 and 〈J b〉 quantities are directly related with the
magnetization on the a, b-sublattices:

Mδ = NδgδμB〈J δ〉. (4)

Here δ = a, b is the sublattice index. In our magnetic lattice
there are Na = pN magnetic atoms of kind J a and Nb = q N
atoms of kind J b (here N is the total number of magnetic
atoms, p is the fraction of magnetic atoms on a-sites and
q = 1 − p is the fraction of magnetic atoms on b-sites). The
Hamiltonian (3) can be written as:

H = −μBgaha J a − μBgbhb J b, (5)

with
ha = h + γab Mb + γaa Ma, (6)

hb = h + γba Ma + γbb Mb, (7)

where γab = λab Zab/(Nb gagbμ
2
B), γba = λab Zba/(Na gagb

μ2
B), γaa = λaa Zaa/(Na g2

aμ
2
B) and γbb = λbb Zbb/(Nb g2

bμ
2
B)

are the proper normalized exchange parameters. It can be
shown [29] from the general arguments that γab = γba.

Using the energy eigenvalues and eigenvectors of the
Hamiltonian (5) the mean value quantities 〈J a〉 and 〈J b〉 from
relation (4) can be calculated, leading to the following coupled
magnetic state equations

Ma = pNμBga Ja BJ
[
μBga Jaha/kT

]
, (8)

Mb = q NμBgb Jb BJ
[
μBgb Jbhb/kT

]
. (9)

Where BJ is the Brillouin function, Ja and Jb are the total
angular momentum numbers, and k is the Boltzmann constant.

The magnetization curves M = Ma + Mb that emerge
as the solution from the magnetic state equations (8) and (9)
can present several different profiles. Depending on the
chosen set of exchange parameters [γab, γaa, γbb], the ionic
parameters [ga, Ja, gb, Jb] and the fraction of magnetic ions of
a-kind and b-kind [p, q] the magnetic structure configurations
ferrimagnetic (FI), antiferromagnetic (AF), and ferromagnetic
(FE) can be obtained. The transition temperature from these
ordered phases to paramagnetic (PA) phase can be obtained
analytically from the magnetic state equations and is given by

TFI = 1
2

[
(pCaγaa + qCbγbb)

+
√

(pCaγaa − qCbγbb)2 + 4pqCaCbγ
2
ab

]
, (10)

where Ca = g2
aμ

2
B Ja(Ja + 1)/3k and Cb = g2

bμ
2
b Jb(Jb + 1)/

3k are the Curie constants. A particular case of relation (10)
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is obtained considering p = q = 1/2, Ca = Cb = C , and
γaa = γbb which leads to the well know Néel temperature

TAF = C(γaa + |γab|)
2

, (11)

and the simplest case occurs considering γaa = γab = γ , in
relation (11), which leads to the (FE)–(PA) phase transition at
the Curie temperature TFE = Cγ .

The magnetic entropy change �S versus T in an
isothermal process that occurs for magnetic field change
(h: 0 → h0) can be calculated by the integration of the
Maxwell relation:

�S =
∫ h0

0

(
∂M

∂T

)

h

dh. (12)

Under an adiabatic–isobaric process, the temperature change
due to the change of the magnetic field (h: 0 → h0) is obtained
from the relation

�Tad = −
∫ h0

0

T

Ch

(
∂M

∂T

)

h

dh, (13)

where Ch = Ch(h, T ) is the total heat capacity at constant
magnetic field and pressure. Usually in magnetic systems the
two main contributions to Ch are due to the crystal lattice
Cl = Cl(T ) and the magnetic lattice Cm = Cm(T, h). The first
contribution is usually considered in the Debye approximation
and the second one depends on the magnetic interactions taken
into account in the model magnetic Hamiltonian.

Alternatively, from a theoretical point of view, the
magnetic entropy can be directly calculated from the
temperature derivative of the free energy. Using the
Hamiltonian, the free energy is obtained:

F = −kT Na ln(Za) − kT Nb ln(Zb), (14)

where Za and Zb are the partition functions of the sublattices
a and b, respectively, and are given by:

Zδ =
sinh

[(
2Jδ+1

2Jδ

)
xδ

]

sinh
[(

1
2Jδ

)
xδ

] , (15)

where xδ = μBgδ Jδhδ/kT . From the free energy (14), the
magnetic entropy is obtained:

S(T, h) = R
[

p(ln Za − xa BJ (xa)) + q(ln Zb − xb BJ (xb))
]
,

(16)
where R is the gas constant. In this way, relation (12) can also
be expressed as:

�S = S(T, h = h0) − S(T, h = 0). (17)

It is worth noticing that for high temperature, the Brillouin
functions go to zero and the partition functions go to the
total number of quantum magnetic states, i.e. (2Ja + 1) and
(2Jb + 1) in the magnetic ions on sites a and b, respectively in
relation (16). Therefore, the maximum value of the magnetic
entropy of the system formed by two sublattices with quantum
total angular momentum Ja and Jb is given by:

SMax. = R
[

p ln(2Ja + 1) + q ln(2Jb + 1)
]
. (18)

Figure 1. Magnetization versus temperature curves for applied
magnetic fields h = 3, 5, and 7 T, calculated using the model
parameters: p = q = 1/2, ga = gb = 2, Ja = Jb = 7/2,
γaa = γbb = 61.1 T2 meV−1, and γab = −122.2 T2 meV−1

(antiferromagnetic phase with TAF = 75 K). The inset shows the two
sublattice magnetizations, Ma and Mb versus temperature for
magnetic field h = 3 T.

3. Model application and discussions

3.1. MCE in antiferromagnetic systems

In the simplest form of an antiferromagnetic system, the
lattice of magnetic ions can be divided into two equivalent
interpenetrating sublattices (a) and (b) such that (a) ions
have only (b) ions as nearest neighbors, and vice versa
with the magnetic moment saturated antiparallel at absolute
zero temperature. In order to simulate an antiferromagnetic
system using the model discussed above, the following model
parameters were adopted: ga = gb = 2; Ja = Jb = 7/2
(which correspond, for example, to the Landé and total angular
moment number for the gadolinium free ion); γaa = γbb =
61.1 T2 meV−1, γab = −122.2 T2 meV−1 (these values leads
to the Néel temperature TAF = 75 K, see relation (11)) and
p = q = 1/2 (an equal number of up and down spins in the
two sublattices (a) and (b), as it should be in antiferromagnetic
system).

Figure 1 shows the temperature dependence of the net
magnetization M = Ma + Mb for different values of the
external magnetic field, namely h = 3, 5, and 7 T. As
the temperature increases, the thermal energy reduces the
spontaneous magnetization in both sublattices (a) and (b), as
shown in the inset of figure 1. Nevertheless, applying the
external magnetic field on the magnetic moment direction of
the (a)—magnetic moment ions leads to an increase of the
net magnetization with temperature until TAF. Above TAF the
thermal energy effect overcomes the field alignment magnetic
energy and M decreases with temperature. It is worth noticing
that TAF decreases with intensity of the magnetic field.

Figure 2 shows the temperature dependence of −�S for
magnetic field changes �h: 0 → 5, 10, 15 T considering the
same model parameters used in the construction of curves in
figure 1. As expected, the negative values for −�S versus

3



J. Phys.: Condens. Matter 21 (2009) 056004 P J von Ranke et al

Figure 2. Magnetic entropy changes, −�S, versus temperature (in
an isothermic process) for applied magnetic field changes: h = 0–5,
0–10 and 0–15 T, calculated using the model parameters:
p = q = 1/2, ga = gb = 2, Ja = Jb = 7/2,
γaa = γbb = 61.1 T2 meV−1, and γab = −122.2 T2 meV−1

(antiferromagnetic phase with TAF = 75 K).

T curves appear below the Néel temperature, TAF = 75 K,
since the derivative of M versus T presents a positive sign,
see Maxwell relation (12). Above TAF = 75 K, in the
paramagnetic phase region, the typical decreasing profiles
of −�S versus T curves are observed. A very interesting
behavior in −�S versus T curves is predicted to occur when
the magnetic field intensity increases. Two regions can be
identified which we call the nonlinear and linear in the −�S
versus T profile. In the non-linear region the modulus of �S
increases in a nonlinear fashion up to the Néel temperature in
the presence of applied magnetic field, TAF(h). The linear
region occurs in the temperature interval TAF(h) < T <

TAF (h = 0). In this region −�S varies linearly with
temperature and changes sign in this interval. For the magnetic
field changes considered �h: 0 → 5, 10, and 15 T, the
temperature intervals of the linear regions are �T Linear: 1.3,
5.4, and 11.7 K, respectively. It is worth noticing that linear
temperature interval increases almost in the same proportion
as the peak in the −�S versus T curves.

Figure 3 shows the temperature dependence of �Tad

for magnetic field changes �h: 0 → 5, 10, and 15 T
for the same model parameters considered above. These
curves were calculated using relation (13) which requires the
heat capacity function. For simplicity only magnetic and
lattice entropy was considered, i.e. Ch(T, h) = Cmag(T, h) +
Clatt(T ). The Cmag as discussed above, was obtained from
the temperature derivative of the thermodynamic mean value
of the Hamiltonian (1) and introduced in the relation (13)
under the self-consistent condition, and the lattice entropy
was considered in the Debye approximation with Debye
temperature TD = 300 K. Above the Néel temperature,
i.e. in the paramagnetic region, the �Tad versus T curves
present the usual behavior, where �Tad decreases smoothly
to zero with temperature. Below the Néel temperature the
inverse magnetocaloric effect occurs. The inverse MCEs were
observed in several antiferromagnetic material measurements

Figure 3. Adiabatic temperature changes, �Tad, versus temperature
for applied magnetic field changes: �h = 0–5, 0–10 and 0–15 T,
calculated using the model parameters: p = q = 1/2, ga = gb = 2,
Ja = Jb = 7/2, γaa = γbb = 61.1 T2 meV−1,
γab = −122.2 T2 meV−1, and TD = 300 K (antiferromagnetic phase
with TAF = 75 K). The inset shows the �Tad versus T , for h = 10 T
considering different values for the Debye temperatures: TD = 100,
300, and 500 K.

(see [16, 20, 23, 26–28]), but as far as we know, it was
never simulated using a self-consistent microscopic model.
Nevertheless, the inverse MCE is expected to occur from the
general thermodynamic relation (13) in which a negative sign
appears and all thermodynamic quantities are positive (note
that the derivative of M versus T in the antiferromagnetic
region is positive, see figure 1). The inset of figure 3 shows
the influence of the Debye temperature on �Tad versus T for
magnetic field change �h: 0 → 10 T. The solid curve in the
inset was calculated using TD = 300 K and the circles and
squares represent the �Tad versus T curves using TD = 100 K
and TD = 500 K, respectively. As the Debye temperature
increases, the lattice contribution to the heat capacity decreases
and consequently the �Tad increases as expected [30] from
relation (13). As the Debye temperature increases from TD =
100 to 300 K a comparable increases in �Tad above and below
the Néel temperature is observed. On the other hand, when the
Debye temperature increases from TD = 300 to 500 K, a high
change is observed above the Néel temperature compared with
the small change below the Néel temperature.

3.2. MCE in ferromagnetic systems

Figure 4 shows the temperature dependence of the −�S
(scale on the left vertical axis) and �Tad (scale on the right
vertical axis) for magnetic field change �h: 0 → 5 T.
These curves were obtained from the above model, only
changing the exchange interaction γab from γab = −122.2
to 61.1 T2 meV−1. Therefore, since now γaa = γbb = γab

the ferromagnetic nature is imposed on the model Hamiltonian.
Solving the magnetic state equations (8) and (9), we obtain the
typical ferromagnetic curve (not shown in this work) for the net
magnetization M = Ma + Mb with saturation magnetization
M(T = 0) = 7μB and Curie temperature TFE = 50 K.
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Figure 4. Magnetic entropy changes, −�S, (left scale) (in an
isothermic process) and adiabatic temperature changes, �Tad, (right
scale) versus temperature for applied magnetic field changes
�h = 0–10 T, calculated using the model parameters: p = q = 1/2,
ga = gb = 2, Ja = Jb = 7/2, γaa = γbb = γab = 61.1 T2 meV−1

(ferromagnetic phase with TFE = 50 K), and TD = 300 K.

This Curie temperature is in accordance, as expected, with
the value that comes from the analytical relation TFE = Cγ

presented before. The maximum values of the MCE (in both
curves −�S and �Tad in a ferromagnetic system) occur at
the Curie temperature. Comparing the −�S curves in the
antiferromagnetic and ferromagnetic regimes, we conclude
that much more MCE is extracted at the ferro-paramagnetic
phase transition than in the antiferro-paramagnetic phase
transition. However, for antiferromagnetic materials, the
MCE can occur in a broad temperature range which can
be of practical interest. Physically it is expected since the
ferromagnetic configuration presents less entropy than the
antiferromagnetic one (considering ions with the same values
of total angular moment) and in the paramagnetic phase the
maximum magnetic entropy depends only on the total angular
moment number SMax.

mag = R ln(2J + 1).

3.3. MCE in ferrimagnetic systems

Even for the two sublattice system discussed above, there are
several schemes that can lead to ferrimagnetic arrangements.
We investigate here the ferrimagnetism arrangement in which
all the magnetic ions have identical magnetic moment
magnitudes, regardless of whether they are on the a-up
sublattice or on the b-down sublattice, but with the fraction of
a-ions with up spins, different from the fraction of b-ions with
down spins, i.e. (p �= q), which leads to the non-compensation
magnetic moment in the magnetic system, therefore the system
will possess a net moment M = Ma + Mb �= 0. This case was
treated in detail by Néel [31], and a particular case considering
(p = q) basically reduces this ferrimagnetic arrangement to
the antiferromagnetic one, presented above.

In order to study the MCE in the ferrimagnetic
arrangement discussed above, we consider the following fixed
model parameters: ga = gb = 2; Ja = Jb = 7/2; p =
2/3, and γab = −200 T2 meV−1. Several different profiles

Figure 5. Magnetization versus temperature curves in ferrimagnetic
phases, calculated using the model parameters: γaa = 300, γbb = 0,
and γab = −200 T2 meV−1 (curve A); γaa = 150, γbb = 230, and
γab = −200 T2 meV−1 (curve B); γaa = 13, γbb = 500, and
γab = −200 T2 meV−1 (curve C); γaa = 0, γbb = 590, and
γab = −200 T2 meV−1 (curve D); γaa = 10, γbb = 400, and
γab = −80 T2 meV−1 (curve E). All the other model parameters are
common for all the curves p = 2/3, q = 1/3, ga = gb = 2,
Ja = Jb = 7/2.

for the temperature dependence of the net magnetization
M can be obtained by the variation of the intensity of
the intra-sites exchange interactions γaa and γbb. Figure 5
shows M versus T curves considering the following model
parameters, represented by the coordinated pair (γaa, γbb):
curve A (300, 0), curve B (150, 230), curve C (13, 500),
curve D (0, 590). These curves were obtained numerically
by the self-consistency procedure and the ordered–disordered
phase transition temperatures were observed at TFI =
194.26 K, 146.5 K, 172.4 K, and 192 K, respectively. These
critical phase transition temperatures, emerging from the
numerical calculations, are in complete accordance with those
calculated from the analytical relation (10), as expected. The
inset of figure 5 shows the normalized coordinate points
(γaa/γab, γbb/γab) which measure the intensity of the intra-
sites exchange interaction in the a- and b-sites relative to the
inter-site exchange interaction, for the four curves considered.
The curve A presents, below T = 90 K, an increase of the
net magnetization M with temperature. This unusual shape
occurs when the molecular field on b-site ions is less than
on a-site ions, as a result Mb decreases more rapidly with
temperature than Ma and, therefore, the net magnetization
M = Ma + Mb = |Ma | − |Mb| increases. The curve
B has a usual profile where the magnetization decreases
with increasing temperature (like the ferromagnetic profile).
The curves C and D present the so-called ferrimagnetic
compensation temperature (Tcomp) where the net magnetization
vanishes since both sublattices present the same non-zero
intensity magnetization |Ma | = |Mb| with opposite directions.
The curve E was obtained considering the following model
parameters γab = −80 T2 meV−1, γaa = −10 T2 meV−1 and
γbb = 400 T2 meV−1. The curve E presents Tcomp ∼ 43 K
and TFI = 117.6 K and a high value of magnetization (of

5
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Figure 6. Magnetization versus temperature curves for applied
magnetic fields h = 0, 4, and 8 T, calculated using the model
parameters: p = 2/3, q = 1/3, ga = gb = 2, Ja = Jb = 7/2,
γaa = 300, γbb = 0, and γab = −200 T2 meV−1 (ferrimagnetic
phase).

about 0.8 μB) between Tcomp and TFI. The parameters that were
considered for the construction of curve E will be used below
in the study of the MCE, where the compensation temperature
exists.

Figure 6 shows the temperature dependence of the net
magnetization, considering the model parameters of curve A
for applied magnetic fields h = 0, 4, and 8 T. For temperatures
below, approximately, Tk = 95 K (see the arrow in figure 6),
the magnetization decreases with temperature decreasing, as
expected, since the b-sublattice presents γbb < γaa. It is
worth noticing that increasing the magnetic field leads to an
increase of the temperature derivative of the magnetization
curves below Tk .

Figure 7 shows the temperature dependence of −�S
considering the same model parameters from curve A for
magnetic field changes from 0 to 2 T, 0 to 5 T, and 0 to
10 T. The negative values for −�S occur below Tk = 95 K
(see the arrow in figure 7). Above Tk , the −�S curves
present positive values increasing with temperature up to TFI =
194.26 K, and above this temperature smooth decreases in
−�S curves are observed. The negative values of −�S below
Tk occur due to the positive temperature derivative of the
magnetization below Tk (see figure 6 and relation (12)). Above
Tk the temperature derivative of the magnetization is negative,
leading to positive values for −�S versus temperature curves.
The minimum values in the −�S curves in figure 7 depend
on the magnetic field intensity (−�Smin . = −0.05, −0.13
and −0.3 J mol−1 K−1 for magnetic field changes from 0 to
2 T, 0 to 5 T, and 0 to 10 T, respectively). The minimum
values in −�S occur around T = 30.3 K at which the
maximum temperature derivative of the magnetization, in the
temperature interval between T = 0 K and Tk , occurs. We
should mention that all the −�S versus temperature curves
presented in this work, calculated using the integral calculation
given by the relation (12), were confirmed by using the
analytical relation (16) obtained for the two sublattice magnetic

Figure 7. Magnetic entropy changes, −�S versus temperature (in an
isothermic process) for applied magnetic field changes: �h = 0 to 2,
0 to 5, and 0 to 10 T, calculated using the model parameters:
p = 2/3, q = 1/3, ga = gb = 2, Ja = Jb = 7/2, γaa = 300,
γbb = 0, and γab = −200 T2 meV−1 (ferrimagnetic phase).

Figure 8. Magnetic entropy changes (in an isothermic process),
−�S, versus temperature for applied magnetic field changes:
�h = 0–3, 0–5, and 0–7 T, calculated using the model parameters:
p = 2/3, q = 1/3, ga = gb = 2, Ja = Jb = 7/2, γaa = 10,
γbb = 400, and γab = −80 T2 meV−1. (ferrimagnetic phase). The
inset shows the magnetic entropy versus temperature for magnetic
field h = 0 (dotted curve) and for h = 7 T (solid curve).

entropies. Particular attention must be taken in the MCE
calculation in order to be consistent with both formulations
presented in relations (12) and (16): the magnetization that
appears in relation (12) is not the modulus of the sublattice
magnetization sum |Ma + Mb| as usually considered in the
plotting of ferrimagnetic systems, as in our figure 5. The proper
magnetization value is M = Ma + Mb , which can be negative.

Figure 8 shows the temperature dependence of −�S
curves, using the same model parameters considered for curve
E in figure 7, for magnetic field changes from 0 to 3 T
(circles), 0 to 5 T (squares), and 0 to 7 T (triangles). The
high absolute values of the −�S curves are present at low
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temperature T ∼ 13 K and are associated with the high
net magnetization changes at about (�M = 2.4 μB) below
the compensation temperature. It is worth noticing that the
absolute −�S peak value, for magnetic field change from 0 to
5 T, is 2.6 J mol−1 K−1, which is smaller than the −�S peak
obtained for the same magnetic field change in a ferromagnetic
configuration 4.6 J mol−1 K−1 (see figure 4). The second and
lower peaks are observed in the −�S curves at the ferri-
paramagnetic phase transition TFI = 117.6 K (see the arrow
in figure 8).

The inset in figure 8 shows the temperature dependence
of the magnetic entropy without magnetic field (solid curve)
and with 7 T magnetic fields (dotted curve), obtained from
relation (16). The −�S curves have a zero value between
the Tcomp and TFI which occurs exactly at the temperature T0

where the maximum magnetization values appear, see curve
E in figure 5 and the relation (12). In our case, T0 = 82 K
(see the inset of figure 8) and this temperature separates the
normal magnetocaloric effect from the inverse magnetocaloric
effect. In other words, ferrimagnetic systems which present
compensation temperature absorb heat below T0 and release
heat above T0 under magnetic field application.

Figure 9 shows the temperature dependence of �Tad for
magnetic field changes from 0 to 3, 0 to 5, and 0 to 7 T
using the same magnetic model parameters considered in the
calculation of −�S versus T in figure 8. The lattice entropy
was taken in the Debye assumption with the Debye temperature
TD = 300 K (the same value adopted in the �Tad calculation
for the antiferromagnetic and ferromagnetic configurations,
displayed in figures 3 and 4). The magnitude of the �Tad

peak at low temperature presents almost double the value of the
�Tad peaks at TFI for the corresponding magnetic field change.
As expected, the inverse magnetocaloric effect is registered in
the �Tad versus T curve for ferrimagnetic configuration below
T0 where the maximum magnetization occurs between Tcomp

and TFI (at T0 the temperature derivative of the magnetization
is zero in both expression (12) and (13) which corresponds
to the crossing between entropy curves with and without
applied magnetic field shown in the inset of figure 8). In this
way, a ferrimagnetic system which presents a compensation
temperature is expected to cool down below T0 and heat up
above T0 under magnetic field application.

The inset in figure 9 shows the influence of the Debye
temperature on the two �Tad versus T peaks discussed
above. The curve represented by squares is calculated
with TD = 300 K (the same as appears in figure 9),
the dotted and solid curves were calculated using TD =
100 K and TD = 500 K, respectively. It should be
noted that, for the considered magnetic model parameters,
the increase of the Debye temperature is more relevant at
inverse magnetocaloric temperature peaks than at the ferri-
paramagnetic phase transition peaks.

4. Final comments

In this work a magnetic microscopic model, formed
by two magnetic sublattices, which leads to different
kinds of magnetic configurations, namely ferrimagnetic,

Figure 9. Adiabatic temperature changes, �Tad, versus temperature
for applied magnetic field changes: �h = 0 to 3, 0 to 5, and 0 to 7 T,
calculated using the model parameters: p = 2/3, q = 1/3,
ga = gb = 2, Ja = Jb = 7/2, γaa = 10, γbb = 400,
γab = −80 T2 meV−1 (ferrimagnetic phase), and TD = 300 K. The
inset shows the �Tad versus T , for �h = 0–5 T, considering different
values for the Debye temperatures: TD = 100, 300 K, and 500 K.

antiferromagnetic, and ferromagnetic, was discussed by
systematic changes of the model parameters. The influence
of these magnetic configurations on the magnetocaloric effect
was investigated using the sublattice self-consistent numerical
procedure. This theoretical investigation allowed a better
understanding of the inverse magnetocaloric effect observed
in antiferromagnetic and ferrimagnetic materials. We must
bear in mind that the origin of the inverse magnetocaloric
effect is not only a consequence of the nature of the
ferri-or antiferromagnetic configurations, for example, the
paramagnetic intermetallic compound PrNi5 presents the
inverse MCE associated with crystalline electrical field level
crossing [21, 22]. The simulations using the model discussed
in this paper lead to several theoretical predictions for the
magnetocaloric −�S and �Tad quantities (curves profiles) as
well as a systematic comparison between them.
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